• 
    <ul id="auswy"><sup id="auswy"></sup></ul>
  • <ul id="auswy"></ul>
    ABB
    關注中國自動化產業發展的先行者!
    CAIAC 2025
    2025工業安全大會
    OICT公益講堂
    當前位置:首頁 >> 案例 >> 案例首頁

    案例頻道

    線性廣義時滯系統的狀態反饋H∞控制
    • 企業:控制網     領域:人機界面     行業:建筑樓宇    
    • 點擊數:1542     發布時間:2007-08-21 11:40:44
    • 分享到:
    首先利用線性矩陣不等式(LMI)方法,給出線性廣義時滯系統穩定的一個充分條件;然后討論廣義時滯系統的H∞狀態反饋控制,給出控制器存在的充分條件,同時給出控制器的設計,控制器可由矩陣不等式解得。



        為適應近代科學技術的發展以及大型工程技術的需要,人們提出了非傳統數學模型描述的廣義系統。信息傳遞等因素致使系統普遍存在滯后現象[1,2],因而人們又提出滯后廣義系統[3,4]。滯后廣義系統的結構相當復雜[4],既不同于無滯后的廣義系統,又不同于通常的滯后系統。

        H∞控制理論是魯棒理論的一個重要分支,近年來隨著無滯后線性系統H∞理論的日趨成熟和完善,滯后線性系統的H∞理論也得到了相應的發展[5,6]。但由于廣義滯后系統結構的復雜性,致使對滯后廣義系統的H∞控制問題的研究仍處于初級階段[4]。本文利用線性矩陣不等式方法,討論一般的廣義時滯系統H∞控制問題,給出了問題可解的一個充分條件以及控制器設計。

    1 問題描述與預備知識
          
        考慮如下線性廣義時滯系統
         
                    (1)

        其中:為系統的狀態變量,為控制輸入,為干擾輸入,為控制輸出, >0為滯后常數,為任一連續的滿足相容性條件的初始函數,各系數矩陣為適維常陣。特別地,=p<n。不失一般性,假設Cz,B1和D1都為零矩陣,否則可通過狀態擴維方式將系統(1)轉化為
        
        本文的目的是設計無記憶的狀態反饋
                                    (2)
        其中為常陣,使得系統(1)與反饋控制器(2)構成的閉環系統
                            (3)
        滿足如下條件:1)內穩定;2)表示從干擾輸入W(t)到被控輸出  Z(t)的傳遞函數,>0為給定常數。

        設有滯后廣義系統

                            (4)

        其中:
         且連續,
                        (5)   

        在給出穩定性概念之前,還需引用如下記號:

       
       

            
     
       
        
       

       

       
        
       

                                     (9)
        其中,則系統(1)的H∞控制問題有解,即系統(3)內穩定,且滿足H∞范數界 
           
    2主要結果
     
       

        證明 引理2中(7)的第二個不等式等價于下式
     
       

        則將引理1的結果應用于引理2即可得定理1。

        下面給出系統(3)內穩定且滿足H∞范數界,即的一個充分條件。

         
     
       

       

        證明 ,則將引理1中的結果應用到引理3即可證明定理2(證明略)。

        定理3若存在矩陣滿足如下矩陣不等式

         

         證明 使用兩次Schur補引理可將(8)式簡化成下列不等式
         
        

         將引理1的結果應用到引理4即可得定理3。

    參考文獻

        [1]Hale J K. Theory of Functional Differential Equations[M].New York:Springer
    Verlag,1977.

        [2]劉永清,唐功友.大型動力系統的理論與應用——卷三:滯后、穩定與控制[M].廣州:華
    南理工大學出版社,1992.

        [3]Campbell S L. Singular Systems of Differential Equation[M].San Francisco:
    Pitman,1980.

        [4]劉永清,謝湘生.大型動力系統的理論與應用——卷八:滯后廣義系統的穩定,鎮定與控制[M].廣州:華南理工大學出版社,1998.

        [5]Wen T, Yaling C. H∞-optimal control for descriptor systems[A]. Proc of 12th IFAC World Congress[C].Sydney,1993.2:201-204.

        [6]Masubuchi I,Kamitane Y,Ohara A,et al. H∞ control for descriptor systems:A matrix inequalities approach[J].Automatica,1997,33(1):669-673.

        [7]劉永清,王偉,李遠清.大型動力系統的理論與應用——卷七:滯后廣義系統解的基本理論與應用[M].廣州:華南理工大學出版社,1997.

        [8]曾建平,張怡,車玲.一類線性矩陣不等式可行解集的構造.Proceedings of the 24th
    Chinese Control Conference[C].Guangzhou,P.R.China,2005.7:538-540.

        [9]馮俊娥,程兆林.線性廣義時滯系統的H∞狀態反饋控制器[J].控制與決策,2003,18(2):159-163.

        廖勇,曾建平 (廈門大學自動化系,福建 廈門,361005)

    熱點新聞

    推薦產品

    x
    • 在線反饋
    1.我有以下需求:



    2.詳細的需求:
    姓名:
    單位:
    電話:
    郵件: